翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

branching quantifier : ウィキペディア英語版
branching quantifier
In logic a branching quantifier, also called a Henkin quantifier, finite partially ordered quantifier or even nonlinear quantifier, is a partial ordering
:\langle Qx_1\dots Qx_n\rangle
of quantifiers for Q∈. It is a special case of generalized quantifier. In classical logic, quantifier prefixes are linearly ordered such that the value of a variable ''ym'' bound by a quantifier ''Qm'' depends on the value of the variables
:y1,...,ym-1
bound by quantifiers
:Qy1,...,Qym-1
preceding ''Qm''. In a logic with (finite) partially ordered quantification this is not in general the case.
Branching quantification first appeared in a 1959 conference paper of Leon Henkin.〔Henkin, L. "Some Remarks on Infinitely Long Formulas". ''Infinitistic Methods: Proceedings of the Symposium on Foundations of Mathematics, Warsaw, 2–9 September 1959'', Panstwowe Wydawnictwo Naukowe and Pergamon Press, Warsaw, 1961, pp. 167-183. 〕 Systems of partially ordered quantification are intermediate in strength between first-order logic and second-order logic. They are being used as a basis for Hintikka's and Gabriel Sandu's independence-friendly logic.
==Definition and properties==

The simplest Henkin quantifier Q_H is
:(Q_Hx_1,x_2,y_1,y_2)\phi(x_1,x_2,y_1,y_2)\equiv\begin\forall x_1 \exists y_1\\ \forall x_2 \exists y_2\end\phi(x_1,x_2,y_1,y_2).
It (in fact every formula with a Henkin prefix, not just the simplest one) is equivalent to its second-order Skolemization, i.e.
:\exists f \exists g \forall x_1 \forall x_2\phi (x_1,x_2,f(x_1),g(x_2)).
It is also powerful enough to define the quantifier Q_}x)\phi (x)\equiv\exists a(Q_Hx_1,x_2,y_1,y_2)(a\land (x_1=x_2 \leftrightarrow y_1=y_2) \land (\phi (x_1)\rightarrow (\phi (y_1)\land y_1\neq a)) ).
Several things follow from this, including the nonaxiomatizability of first-order logic with Q_H (first observed by Ehrenfeucht), and its equivalence to the \Sigma_1^1-fragment of second-order logic (existential second-order logic)—the latter result published independently in 1970 by Herbert Enderton〔Jaakko Hintikka and Gabriel Sandu, "Game-theoretical semantics", in ''Handbook of logic and language'', ed. J. van Benthem and A. ter Meulen, Elsevier 2011 (2nd ed.) citing Enderton, H.B., 1970. Finite ordered quantifiers. Z. Math. Logik Grundlag. Math. 16, 393–397 .〕 and W. Walkoe.〔 citing W. Walkoe, Finite ordered quantification, J. Symbolic Logic 35 (1970) 535-555. 〕
The following quantifiers are also definable by Q_H.〔
* Rescher: "The number of φs is less than or equal to the number of ψs"
:(Q_Lx)(\phi x,\psi x)\equiv Card(\ )\leq Card(\ ) \equiv (Q_Hx_1x_2y_1y_2)(\leftrightarrow y_1=y_2) \land (\phi x_1 \rightarrow \psi y_1) )
* Härtig: "The φs are equinumerous with the ψs"
:(Q_Ix)(\phi x,\psi x)\equiv (Q_Lx)(\phi x,\psi x) \land (Q_Lx)(\psi x,\phi x)
* Chang: "The number of φs is equinumerous with the domain of the model"
:(Q_Cx)(\phi x)\equiv (Q_Lx)(x=x,\phi x)
The Henkin quantifier Q_H can itself be expressed as a type (4) Lindström quantifier.〔

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「branching quantifier」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.